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Abstract
We take a direct approach to computing the orbits for the action of the automorphism
group G2 of the Honda formal group law of height 2 on the associated Lubin–Tate
rings R2. We prove that (R2/p)G2

∼= Fp. The result is new for p = 2 and p = 3. For
primes p ≥ 5, the result is a consequence of computations of Shimomura and Yabe
and has been reproduced by Kohlhaase using different methods.

Keywords Honda formal group law · Lubin-Tate ring · Morava E-theory · Morava
stabilizer group · Chromatic Vanishing Conjecture
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1 Introduction

In this paper, we consider a direct approach to computing orbits for the action of the
automorphism group of the Honda formal group law of height 2 on the reduction
modulo (p) of the associated Lubin–Tate ring. The results are new for p = 2 and
p = 3 and they follow from the work of Shimomura and Yabe [14] if p ≥ 5, also
reproduced by Kohlhaase in [10]. We also use this as an opportunity to highlight some
of the results on the action of the automorphism group which appeared in French in
the doctoral thesis of Lader [11]. See Sect. 3.

These results are meant to lend weight to a conjecture, which for lack of a better
name we will call the Chromatic Vanishing Conjecture. This conjecture plays a key
role in the analysis of Hopkins’ Chromatic Splitting Conjecture (as stated by Hovey
in [9]) at the prime p = 3 in [6] and at the prime p = 2 in [2]. See Remark 1.3
below. The importance this statement plays at height n = 2 was originally high-
lighted to the last author by Hans-Werner Henn. To state it, consider the Honda
formal group law of height n over Fpn . The associated Lubin–Tate ring Rn satis-
fies Rn ∼= W[[u1, . . . , un−1]] where W are the Witt vectors on Fpn . Let Hn be the
Honda formal group law of height n and Sn be the group of automorphisms of Hn

over Fpn . Since Hn has coefficients in Fp, the Galois group Gal(Fpn/Fp) acts on Sn .
We let Gn be the extension of Sn by the Galois group.

Conjecture 1.1 (Chromatic Vanishing Conjecture) Let W → Rn and Fpn → Rn/p
be the natural maps.

(1) (Integral) The continuous cohomology and homology of Rn/W vanish in all
degrees so that

H∗(Gn, Rn) ∼= H∗(Gn, W) H∗(Gn, Rn) ∼= H∗(Gn, W).

(2) (Reduced) The continuous cohomology and homology of (Rn/p)/Fpn vanish in
all degrees so that

H∗(Gn, Rn/p) ∼= H∗(Gn, Fpn ) H∗(Gn, Rn/p) ∼= H∗(Gn, Fpn )

When p � n, the groupsGn are orientedPoincaré duality groups and the statements
for cohomology and homology are equivalent. Further, the reduced conjectures imply
their integral versions. Indeed, using the five lemma, (2) implies the vanishing of the
continuous cohomology and homology with coefficients in (Rn/pk)/(W/pk) for all
k ≥ 1. A lim1 exact sequence then gives the desired implication.

The conjecture is a tautology at height n = 1. At height n = 2, the statements about
cohomology are known to hold for all primes. They are due to Shimomura–Yabe if p ≥
5 [14], to Henn–Karamanov–Mahowald and Goerss–Henn–Mahowald–Rezk for p =
3 [6,8] and to Beaudry–Goerss–Henn for p = 2 [1,2]. Kohlhaase has reproduced the
results for p ≥ 5 in [10, Theorem 3.20] using different methods. For p ≥ 5, Poincaré
duality then gives the homological results. Finally, that H0(Gn, Rn) ∼= H0(Gn, W) ∼=
Zp at all heights and primes is a folklore result of Hopkins See [3, Lemma 1.33].
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Computations of orbits for the Lubin–Tate ring

For p = 2 and p = 3, similar methods to those used to prove the cohomological
results should give a proof of the conjecture for homology. As in the cohomological
cases, this would probably be a tedious computation. However, in this paper, we prove
the homological result modulo (p) in degree zero via a direct argument for all primes,
including p = 2 and p = 3. Our main theorem is:

Theorem 1.2 Let p be any prime. The natural map Fp2 → R2/p induces an isomor-
phism

H0(G2, R2/p) ∼= H0(G2, Fp2).

Remark 1.3 We briefly explain the relationship of Conjecture 1.1 with the Chro-
matic Splitting Conjecture (CSC) as discussed in Section 4 of [9]. Let K (n) be
the Morava K -theory spectrum and En = E(Fpn , Hn) be the Lubin-Tate spectrum,
so that (En)0 ∼= Rn . By the Goerss–Hopkins–Miller Theorem [5], the group Gn

acts on En by maps of E∞ ring spectra and a well-known result of Devinatz and
Hopkins states that LK (n)S0 � EhGn

n [4]. Further, the K (n)-local En-based Adams–
Novikov Spectral Sequence can be identified with the homotopy fixed point spectral
sequence

Es,t
2 = Hs(Gn, (En)t ) 	⇒ πt−s E

hGn
n

∼= πt−s LK (n)S
0.

The CSC predicts that the chromatic reassembly process is governed by elements
of π∗LK (n)S0 which are detected in E∗,0

2
∼= H∗(Gn, Rn) by classes in the image

of the map from H∗(Gn, W). Based on a computation of Lazard and Morava [13,
Remark 2.2.5], the cohomological version of Conjecture 1.1would immediately imply
that the CSC holds rationally. Integrally, it would at the very least imply that the
reassembly classes are present on the E2-page. At large primes where the spectral
sequence collapses, these classes would then exist in homotopy. Proving the cohomo-
logical version of Conjecture 1.1 is among the hardest computations in both [6] and
[2].

At this time, a computational proof of theChromaticVanishingConjecture at higher
heights seems out of reach. One could hope for a computational proof in homologi-
cal degree zero at general heights. However, the precision of the information on the
action of G2 needed to carry out our direct argument suggests that even in this case, a
computational proof may not be feasible. Further, if it is true in general, it should not
be a computational accident and there ought to be a compelling conceptual explana-
tion.

Organization of the paper

In Sect. 2, we give the proof of the main result. In Sect. 3, we review the formulas for
the action of G2 needed for the computations.
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2 Orbits modulo (p)

In this section, we prove our main result which is a direct computation of the orbits
for the action of G2 at height 2.

2.1 Background and results

We begin by recalling a few facts in order to state our results. We refer the reader to
Hazewinkel [7] for more background on formal group laws.

We let H2 be the Honda formal group law of height 2. The p-series of H2 has the
form

[p]H2(x) = x p2 .

The coefficients of H2 are in Fp. We letO2 be the endomorphism ring of H2 over Fp2 .
Then O2 is a module over the p-adic integers Zp, generated by the automorphisms

[1](x) = x S(x) = x p ζ(x) = ζ x

where ζ ∈ Fp2 is a primitive p2 − 1th root of unity. In fact, letting W = Zp(ζ ) be
the ring of integers of the unramified field extension Qp(ζ ) of degree 2 over Qp, an
explicit presentation of O2 is given by

O2 ∼= W〈S〉/(S2 = p, Sa = aσ S)

where a ∈ W and σ is the Frobenius automorphism in

Gal = Gal(Qp(ζ )/Qp) ∼= Z/2.

The group of automorphisms of H2 is S2 = O×
2 . Since Gal acts on O2 via its natural

action on W (and fixing S), we can define

G2 = S2 � Gal.

Now, we turn to the description of the Lubin–Tate ring R2. See Lubin–Tate [12]
for more details. Let R2 = W[[u1]] and F(x, y) = x +F y be a deformation of H2
defined over R2, chosen so that

[p]F (x) = px +F u1x
p +F x p2 .

It follows from Lubin–Tate theory that the deformations of H2 to complete local rings
are co-represented by continuous homomorphisms from the ring R2. The group S2
naturally acts on R2. The Galois group acts on R2 via the action on W, fixing u1, and
this extends the action of S2 to an action of G2.
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To describe the action ofS2, note that any element g ∈ S2 can be expressed uniquely
as a power series

g =
∞∑

i=0

gi S
i

where gp2

i − gi = 0. In other words, a coefficient gi is either zero or a Teichmüller
lift of F

×
p2

in W
×. As we will see in Sect. 3 below,

g∗(u1) = t p−1
0 u1 + t−1

0 t1(p − pp) (2.1)

for a unit t0 in W[[u1]] such that t0 = g0 modulo (p, u1) and an element t1 ∈ W[[u1]]
such that t1 = g1 modulo (p, u1). If g = ζ is a primitive p2 − 1th root of unity in
W

× ⊆ S2, one can show that t0 = ζ and t1 = 0, so that

ζ∗(u1) = ζ p−1u1. (2.2)

For more general elements g ∈ S2, t0 is tedious to compute and Sect. 3 is dedicated
to this task.

The goal of this paper is to compute the orbits for the action of G2 on R2/p, that is,
the coinvariants (R2/p)G2 . We recall the definition of the coinvariants for the action
of a profinite group on a profinite module. Let G = lim←−i

G/Gi for finite quotients
G/Gi . Define

Zp[[G]] = lim←−
i, j

Z/p j [G/Gi ]

and Fp[[G]] = Zp[[G]]/(p). Then, for any profinite module M = lim←−k
Mk where Mk

are finite discrete Zp[[G]]-modules, we have

MG = lim←−
k, j

Mk ⊗Zp[[G]] Z/p j

for the trivial action of G on the right factor Z/p j . Note that if M is an Fp-vector
space, then

MG ∼= lim←−
k

Mk ⊗Fp[[G]] Fp.

WhenG = G2 orS2, we can chooseGi to be the subgroup consisting of those elements
of S2 which are congruent to 1 modulo (Si ). For M = R2/p, we can choose Mk to
be the discrete finite module R2/(p, uk1) and we have

(R2/p)G = lim←−
k

R2/(p, u
k
1) ⊗Fp[[G]] Fp. (2.3)
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We now state the main result.

Theorem 2.1 There is an isomorphism (R2/p)G2
∼= Fp for all primes p.

The proof of Theorem 2.1 uses formulas for the action of G2. We begin with a
summary of the results which are covered in detail in Sect. 3.

2.2 Summary of the action

The action of G2 on

R2/p = Fp2 [[u1]]

is given by (2.1), modulo a computation of the unit t0. The following result, which
is [11, Corollary 3.4] for p ≥ 5 and [8, Section 4.1] for p = 3, is sufficient for our
purposes when p is odd. We will review the proof of this result in Sect. 3 below and
generalize it to include the case p = 2.

Theorem 2.2 Let p be any prime. Let g ∈ S2 be such that g = 1+g1S+g2S2 modulo
(S3). Then

t0 = 1 + gp
1 u1 − g1u

p
1 + (

g2 − gp
2

)
u p+1
1 +

p−1∑

i=1

1

p

(
p

i

)
gpi
1 u p+1+i

1 + g21u
2p
1

+ gp
1 u

p2

1 mod (p, u2p+1
1 ).

When p = 2, we will need more information about the action of g. We give a
computer assisted proof of the following result in Sect. 3.1

Theorem 2.3 Let p = 2. If g = 1 + g2S2 + g3S3 + g4S4 + · · · , then

t0 = 1 + (g2 + g22)u
3
1 + g3u

5
1 + g3u

8
1 + (g4 + g24)u

9
1 mod (2, u101 ).

2.3 Prime independent arguments

The bulk of the proof of Proposition 2.5 will be in proving the following proposition.
We abbreviate S = S2 and R = R2 and let [x] denote the image of an element x under
the natural map Fp2 [u1]/(uk1) → (Fp2 [u1]/(uk1))S.
Proposition 2.4 For k ≥ 2, [uk−1

1 ] = 0 in (Fp2 [u1]/(uk1))S.
Assuming Proposition 2.4, we prove the following result, which immediately

implies Theorem 2.1 by taking Galois coinvariants since (Fp2)Gal
∼= Fp.

1 If one is willing to work with the formal group law of a super-singular elliptic curve rather than the Honda
formal group law, an analogue of Theorem 2.3 follows from Section 6 of [1] where the results were obtained
directly. The analogue of Theorem 2.1 also holds in this case, the proof being completely analogous to the
one provided below.
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Proposition 2.5 The quotient map Fp2 [[u1]] → Fp2 induces an isomorphism

(Fp2 [[u1]])S ∼= Fp2 .

Proof Since taking coinvariants is a right exact functor, the maps in the inverse system
(2.3) fit into an exact sequence

((uk−1
1 )/(uk1))S (Fp2 [u1]/(uk1))S (Fp2 [u1]/(uk−1

1 ))S 0

and Proposition 2.4 implies that the left map is trivial. Therefore, (2.3) is a constant
inverse system whose first term is Fp2 . ��

We turn to the proof of Proposition 2.4. We begin with a simple result.

Proposition 2.6 If n is not of the form (p + 1)α, then for all k ≥ 0, [un1] = 0 in
(Fp2 [u1]/(uk1))S.
Proof By (2.2),

ζ∗(un1) = ζ n(p−1)un1 = un1 + (ζ n(p−1) − 1)un1 .

Therefore, (ζ n(p−1) − 1)[un1] = 0. Since ζ is a primitive p2 − 1th root of unity, then
ζ n(p−1) − 1 is a unit in Fp2 provided that p + 1 does not divide n. It follows that, in
this case, [un1] = 0. ��
Remark 2.7 Note that this result is stronger than Proposition 2.4 in the case n = k−1.
It will be used in its full strength in our proof of Proposition 2.4.

The technique for showing that [uk1] = 0 in (Fp2 [u1]/(uk+1
1 ))S for k = (p + 1)α

varies on the p-adic expansion of α.

Proposition 2.8 If k = (p + 1)α for α non trivial such that α �= 1 modulo (p), then
[uk1] = 0 in (Fp2 [u1]/(uk+1

1 ))S.

Proof Let g = 1 + S. It follows from Theorem 2.2 that

t0 = 1 + u1 mod (p, u p
1 ).

Therefore by (2.1)

g∗(uk−1
1 ) = uk−1

1 (1 + u1)
(p−1)(k−1) mod (p, u p+k−1

1 )

= uk−1
1 + (p − 1)(k − 1)uk1 mod (p, uk+1

1 ).

So long as k �= 1 modulo (p), we can conclude that [uk1] = 0 in (Fp2 [u1]/(uk+1
1 ))S.

Since k = α modulo (p), this proves the claim. ��
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2.4 The remainder of the argument for odd primes

Now, we fix p odd. The case p = 2 will be treated below. We let

k = (p + 1)(1 + p + p2 + · · · + p�−1 + p�η) (2.4)

for � ≥ 0 and η a non-negative integer such that η �= 1 modulo (p). The complexity
of the problem depends on �. The case when � = 0 was Proposition 2.8, so we now
turn to the case when � ≥ 1 in (2.4). Let

kr =
{
k r = 0

kr−1 − (p + 1)pr−1 1 ≤ r < � − 1
(2.5)

for 0 ≤ r < � − 1.
We prove that [ukr1 ] = −[ukr+1

1 ] for 0 ≤ r < �−1 (Proposition 2.9) and [uk�−1
1 ] = 0

(Proposition 2.10) in (Fp2 [u1]/(uk+1
1 ))S. Together, these results finish the proof of

Proposition 2.4.

Proposition 2.9 Let kr be as in (2.5). For 0 ≤ r < � − 1,

[ukr1 ] = −[ukr+1
1 ]

in (Fp2 [u1]/(uk+1
1 ))S.

Proof From Theorem 2.2, we deduce that for g = 1 + S,

t0 = 1 + u1 − u p
1 +

p−1∑

i=1

1

p

(
p

i

)
u p+1+i
1 + u2p1 mod (u2p+1

1 ).

We use (2.1), the fact that a p = a for a ∈ Fp, (x + y)p = x p + y p modulo (p) and
the fact that

kr+1 − pr = prαr

where αr = (p + 1)(p + · · · + p�−1−r + p�−rη) − 1. With this, we deduce that

g∗(ukr+1−pr

1 ) = ukr+1−pr

1⎛

⎝1 + u pr

1 − u pr+1

1 +
p−1∑

i=1

1

p

(
p

i

)
u pr+1+(1+i)pr

1 + u2p
r+1

1

⎞

⎠
(p−1)αr

modulo (ukr+1+2pr+1

1 ). We now simplify this equation. We compute modulo (uk+1
1 )

and note that

k + 1 = kr+1 + (p + 1)(1 + · · · + pr ) + 1

= kr+1 + 2(1 + · · · + pr ) + pr+1 < kr+1 + 3pr + pr+1.
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Therefore,we immediately get rid of all termsof the formun1 forn ≥ kr+1+3pr+pr+1.
Next, we use the fact that αr = p− 1 modulo (p2) so that (p− 1)αr = 1+ p(p− 2)
modulo (p2). For i = i0 + pi1 < p2 with 0 ≤ i0, i1 ≤ p − 1, we then have

(
(p − 1)αr

i

)
=

(
(p − 1)2

i

)
=

(
1

i0

)(
p − 2

i1

)
mod (p),

where
(m
n

) = 0 if m < n. In particular,
(
(p−1)2

2

) = 0 modulo (p). Combining these
facts, we obtain:

g∗(ukr+1−pr

1 ) = ukr+1−pr

1

(
1 + u pr

1 − u pr+1

1 + u pr+1+2pr

1 + p − 1

2
u pr+1+3pr

1 + u2p
r+1

1

)(p−1)αr

= ukr+1−pr

1

⎛

⎝1 +
p+3∑

i=1

(
(p − 1)αr

i

)(
u pr

1 − u pr+1

1 + u pr+1+2pr

1

+ p − 1

2
u pr+1+3pr

1 + u2p
r+1

1

)i
)

= ukr+1−pr

1

⎛

⎝1 +
p+3∑

i=1

(
(p − 1)2

i

) (
u pr

1 − u pr+1

1 + u pr+1+2pr

1

+ p − 1

2
u pr+1+3pr

1 + u2p
r+1

1

)i
)

= ukr+1−pr

1 +
(
ukr+1
1 − ukr+1+pr+1−pr

1 + ukr+1+pr+1+pr

1 + p − 1

2
ukr+1+pr+1+2pr

1

+ukr+1+2pr+1−pr

1

)

+
(

(p − 1)2

3

) (
ukr+1+2pr

1 − 3ukr+1+pr+1+pr

1

)

+
(

(p − 1)2

4

) (
ukr+1+3pr

1 − 4ukr+1+pr+1+2pr

1

)

+
p+3∑

i=5

(
(p − 1)2

i

)
ukr+1+pr (i−1)
1 .

Note further that, if p �= 3, then
(
(p−1)2

3

) = 0 modulo (p). So 3
(
(p−1)2

3

) = 0
modulo (p) for all primes. The above computation then gives the following relation
in the coinvariants

0 =
[
u
kr+1
1

]
+

[
u
kr+1+pr+1+pr

1

]

−
[
u
kr+1+pr+1−pr

1

]
+

[
u
kr+1+2pr+1−pr

1

]

+
(
p − 1

2
− 4

(
(p − 1)2

4

))[
u
kr+1+pr+1+2pr

1

]
+

p+3∑

i=3

(
(p − 1)2

i

) [
u
kr+1+pr (i−1)
1

]
.
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Recall that [un1] = 0 if n is not a multiple of p + 1. Since kr+1 is a multiple of

p + 1, it follows that [ukr+1+pr+1−pr

1 ] = [ukr+1+pr+1+2pr

1 ] = [ukr+1+2pr+1−pr

1 ] = 0
modulo (p). Similarly, the only term that can remain in the summation after taking

this into account is the case i = p + 2. However,
(
(p−1)2

p+2

) = 0 modulo (p), so the
summation is also zero. Therefore, the second and third lines of the equation are zero
in the coinvariants. We conclude that

0 =
[
ukr+1
1

]
+

[
ukr+1+pr+1+pr

1

]
.

��
Proposition 2.10 Let k�−1 = (p + 1)(p�−1 + p�η) for a non-negative integer η such
that η �= 1 modulo (p) as in (2.5). Then

[
uk�−1
1

]
= 0

in (Fp2 [u1]/(uk+1
1 ))S.

Proof Note that

k�−1 − p� = p�−1α�

where α� = 1 + (p + p2)η. Therefore,

g∗
(
uk�−1−p�

1

)
= uk�−1−p�

1
⎛

⎝1 + u p�−1

1 − u p�

1 +
p−1∑

i=1

1

p

(
p

i

)
u p�+(1+i)p�−1

1 + u2p
�

1

⎞

⎠
(p−1)α�

modulo (uk�−1+p�+p�−1

1 ) and note that

k + 1 = k�−1 + p�−1 + 2(1 + · · · + p�−2)

< k�−1 + p�−1 + 3p�−2 ≤ k�−1 + 2p�−1.

So, using the fact that (p − 1)α� = (p − 1) + p(p − η) modulo (p2), we simplify as
before to obtain

g∗
(
uk�−1−p�

1

)
= uk�−1−p�

1

(
1 + u p�−1

1 − u p�

1 + u p�+2p�−1

1

)(p−1)α�

= uk�−1−p�

1

(
1 + (p − 1)α�

(
u p�−1

1 − u p�

1 + u p�+2p�−1

1

)

+
(

(p − 1)α�

2

)(
u p�−1

1 − u p�

1

)2)
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= uk�−1−p�

1

⎛

⎝1 − u p�−1

1 + u p�

1 − u p�+2p�−1

1 +
(
p − 1

2

) (
u2p

�−1

1 − 2u p�+p�−1

1

)

+
p+1∑

i=3

(
(p − 1) + p(p − η)

i

)
uip

�−1

1

⎞

⎠

= uk�−1−p�

1 − uk�−1−p�+p�−1

1 + uk�−1
1 − uk�−1+2p�−1

1

+
(
p − 1

2

)(
uk�−1−p�+2p�−1

1 − 2uk�−1+p�−1

1

)

+
p−1∑

i=3

(
p − 1

i

)
uk�−1−p�+i p�−1

1 +
1∑

j=0

(
p − 1

j

)(
p − η

1

)
uk�−1+ j p�−1

1 .

As before, noting that [un1] = 0 if p + 1 does not divide n, while p + 1 does divide
k�−1, we obtain the following relation in the coinvariants:

0 = −
[
uk�−1−p�+p�−1

1

]
+

[
uk�−1
1

]
−

[
uk�−1+2p�−1

1

]

+
(
p − 1

2

) ([
uk�−1−p�+2p�−1

1

]
− 2

[
uk�−1+p�−1

1

])

+
p−1∑

i=3

(
p − 1

i

) [
uk�−1−p�+i p�−1

1

]
− η

1∑

j=0

(
p − 1

j

) [
uk�−1+ j p�−1

1

]

=
[
uk�−1
1

]
− η

[
uk�−1
1

]
.

Since η �= 1 modulo (p), we can conclude that [uk�−1
1 ] = 0. ��

2.5 The remainder of the argument for the prime two

We follow steps similar to those taken at odd primes.

Proposition 2.11 Let k = 3α where α is an integer congruent to 1 modulo (4). Then
[uk1] = 0 in (F4[u1]/(uk+1

1 ))S.

Proof Choose g = 1 + S and consider g∗(uk−2
1 ). We have

g∗(uk−2
1 ) = tk−2

0 uk−2
1

= uk−2
1 (1 + u1 + u21)

k−2 mod (2, uk+1
1 )

= uk−2
1 + uk−1

1 +
(
1 +

(
k − 2

2

))
uk1 mod (2, uk+1

1 ).

123

Author's personal copy



A. Beaudry et al.

Since k − 2 = 1 modulo (4), we have

(
k − 2

2

)
=

(
1

0

)(
0

1

)
· · · = 0 mod (2).

So, [uk−1
1 ] = [uk1] in (F4[u1]/(uk+1

1 ))S. Since k − 1 �= 0 modulo (3), [uk−1
1 ] is zero

in (F4[u1]/(uk+1
1 ))S by Proposition 2.6 and the claim follows. ��

Now, we let k = 3(1+2+22 +· · ·+2�−1 +2�+1η) for η any non-negative integer
and � ≥ 2, we write

kr =
{
k r = 0

kr−1 − 3 · 2r−1 1 ≤ r ≤ � − 2.
(2.6)

We prove that [ukr1 ] = [ukr+1
1 ] for 0 ≤ r < �−2 (Proposition 2.12) and that [uk�−2

1 ] = 0
(Proposition 2.13) in (F4[u1]/(uk+1

1 ))S. Together, these results finish the proof of
Proposition 2.4.

Proposition 2.12 Let kr be as in (2.6). For 0 ≤ r < � − 2,

[
ukr1

]
=

[
ukr+1
1

]

in (F4[u1]/(uk+1
1 ))S.

Proof Take g = 1+ζ S2+ζ S4. Note that ζ +ζ 2 = 1 modulo (2), so by Theorem 2.3,

g∗
(
ukr+1−3·2r
1

)
= ukr+1−3·2r

1

(
1 + u31 + u91

)kr+1−3·2r
mod

(
2, u2

r+3+kr+1−2r

1

)

Note that since

k + 1 − kr+1 = 3(1 + 2 + · · · + 2r ) + 1 = 3 · 2r+1 − 2

and 2r+3 − 2r > 3 · 2r+1 − 2, we have that 2r+3 + kr+1 − 2r ≥ k + 1. So modulo
(uk+1

1 ),

g∗
(
ukr+1−3·2r
1

)
= ukr+1−3·2r

1

(
1 + u3·2r1 + u9·2r1

)2−r kr+1−3

=
2−r kr+1−3∑

i=0

(
2−r kr+1 − 3

i

)
ukr+1−3·2r
1

(
u3·2r1 + u9·2r1

)i

=
2−r kr+1−3∑

i=0

i∑

j=0

(
2−r kr+1 − 3

i

)(
i

j

)
ukr+1+3·2r+1 j+3·2r (i−1)
1 .
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Modulo (uk+1
1 ), only terms with j = 0 and i < 3 contribute to the sum. So

=
(
2−r kr+1 − 3

0

)
ukr+1−3·2r
1 +

(
2−r kr+1 − 3

1

)
ukr+1
1 +

(
2−r kr+1 − 3

2

)
ukr+1+3·2r
1

= ukr+1−3·2r
1 + ukr+1

1 +
(
2−r kr+1 − 3

2

)
ukr1 .

Finally, since 2−r kr+1 − 3 = 3 modulo (4), then
(2−r kr+1−3

2

) = 1 modulo (2). So we
conclude that

g∗
(
ukr+1−3·2r
1

)
= ukr+1−3·2r

1 + ukr+1
1 + ukr1 mod

(
2, uk+1

1

)
.

Therefore, [ukr+1
1 ] = [ukr1 ] as desired. ��

Proposition 2.13 Let k�−2 be as in (2.6). Then [uk�−2
1 ] = 0 in (F4[u1]/(uk+1

1 ))S.

Proof Choose g = 1 + S and consider g∗(u2
�−1+3·2�+1η

1 ). We have

g∗
(
u2

�−1+3·2�+1η
1

)
= u2

�−1+3·2�+1η
1

(
1 + u1 + u21 + u41

)2�−1+3·2�+1η

mod

(
2, u

3
(
2�+2�+1η

)

1

)

noting that 3(2� + 2�+1η) ≥ k + 1. Therefore, modulo (uk+1
1 ), we have

g∗
(
u2

�−1+3·2�+1η
1

)
= u2

�−1+3·2�+1η
1

(
1 + u2

�−1

1 + u2
�

1 + u2
�+1

1

)1+3·22η

= u2
�−1+3·2�+1η

1

1+3·22η∑

s=0

s∑

i=0

i∑

j=0

(
1 + 3 · 22η

s

)(
s

i

)(
i

j

)
u2

�−1(s−i)
1 u2

�(i− j)
1 u2

�+1 j
1

=
1+3·22η∑

s=0

s∑

i=0

i∑

j=0

(
1 + 3 · 22η

s

)(
s

i

)(
i

j

)
u2

�−1(1+s+i+2 j)+3·2�+1η
1 .

Note that if s + i + 2 j ≥ 5, the terms vanish for degree reasons. Hence, s ≤ 4,
i ≤ 4 − s, and j ≤ 2 − (s + i)/2, so that

g∗
(
u2

�−1+3·2�+1η
1

)

=
4∑

s=0

max(s,4−s)∑

i=0

max(i,2−(s+i)/2)∑

j=0

(
1 + 3 · 22η

s

)(
s

i

)(
i

j

)
u2

�−1(1+s+i+2 j)+3·2�+1η
1 .
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Since 1 + 3 · 22η = 1 modulo (4),
(1+3·22η

2

) = (1+3·22η
3

) = 0 modulo (2). Further,
(1+3·22η

4

) = η modulo (2). Enumerating the remaining possibilities gives

g∗
(
u2

�−1+3·2�+1η
1

)
= u2

�−1+3·2�+1η
1 + u2

�+3·2�+1η
1 + u3(2

�−1+2�+1η)
1

+ (1 + η)u3(2
�+2�+1η)−2�−1

1

and this holds modulo (2, uk+1
1 ). Therefore, since k�−2 = 3(2�−1 + 2�+1η), we have

[
uk�−2
1

]
=

[
u2

�+3·2�+1η
1

]
+ (1 + η)

[
u
3
(
2�+2�+1η

)−2�−1

1

]

in (F4[u1]/(uk+1
1 ))S. However, the right hand terms are zero by Proposition 2.6, which

proves the claim. ��

3 The action of theMorava stabilizer group

In this section, we continue to abbreviate R = R2 and S = S2. Here, we follow
the derivation of the formula for the universal deformation F(x, y) and the resulting
formulas for the action of S on R as outlined in the doctoral thesis of Lader [11]. Note
that the methods of [11] are a generalization of the techniques of [8, Section 4.1] at
primes p ≥ 5. We claim no originality, but include the computations we need here.
One reason for this is that the doctoral thesis is only available in French. We have also
decided to add more details to the proofs and have taken the opportunity to note that,
with one minor adjustment (Theorem 3.4), the results generalize to the case p = 2.

3.1 The universal deformation

We start by fixing a prime p. Let

V ∼= Z(p)[v1, v2, . . .]

and G(x, y) be the universal p-typical formal group law defined over V . We choose
to work with the Araki generators, which can be described as follows. Let �0 = 1,

logG(x) =
∑

i≥0

�i x
pi

and expG(x) be the formal power series inverse of logG(x) under composition. The
Araki generators vi ’s are then determined by the recursive formula

p�n =
∑

0≤i≤n

�iv
pi

n−i
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where by convention v0 = p. The universal p-typical formal group law is computed
as

G(x, y) = expG(logG(x) + logG(y))

and the Araki generators have the property that

[p]G(x) =
∑

i≥0

Gvi x
pi

where [p]G(x) is the p-series for G(x, y).
The formal group law F(x, y) over R is obtained fromG(x, y) as follows. Consider

the ring homomorphism

ϕ : V → R

determined by ϕ(v1) = u1, ϕ(v2) = 1 and ϕ(vn) = 0 for n > 2. The formal group
law F(x, y) is defined by

F(x, y) = ϕ∗G(x, y).

It follows that

logF (x) =
∑

i≥0

Li x
pi

for Li = ϕ(�i ) and that

[p]F (x) = px +F u1x
p +F x p2 .

We record that

L1 = u1
p − pp

, L2 =

(
1 + u p+1

1
p−pp

)

p − pp2
, L3 =

u1
p−pp + u p2

1

p−pp2
+ u p2+p+1

1

(p−pp)
(
p−pp2

)

p − pp3
.

(3.1)
The goal of this section is to approximate F(x, y). From now on, we let log(x) =

logF (x) and exp(x) = expF (x) so that

F(x, y) = exp(log(x) + log(y)).

We will prove the following result, which is [11, Lemma 3.1].
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Theorem 3.1 (Lader) Let p be any prime. Modulo (x, y)p
2+1, the formal group law

F(x, y) satisfies

F(x, y) = x + y − u1
1 − pp−1Cp(x, y) −

p∑

i=1

ui+1
1 Pp+i(p−1)(x, y)

− 1

1 − pp2−1

(
1 + u p+1

1

p − pp

)
Cp2(x, y),

where

Cpk (x, y) = 1

p

(
(x + y)p

k − x pk − y p
k )

and

Pp+i(p−1)(x, y) = 1

(p − pp)i+1

i∑

j=0

(−1) j

j + 1

(
p( j + 1)

j

)(
j(p − 1) + p

i − j

)

(x p + y p)i− j (x + y)p+pj−i .

We begin with some preliminary results.

Theorem 3.2 Let p be any prime. Given

log(x) = x + L1x
p + L2x

p2 mod (x p3)

the inverse series is given by

exp(x) = x − L1x
p

⎛

⎝
p∑

j=0

(−1) j

j + 1

(
p( j + 1)

j

) (
L1x

p−1
) j

⎞

⎠ − L2x
p2 mod (x p2+1)

Proof First, we recall the Lagrange inversion formula for the inverse of a formal power
series. The formula states that given a formal power series

f (x) = a1x + a2x
2 + a3x

3 + · · ·

the inverse series is given by

f −1(x) = b1x + b2x
2 + b3x

3 + · · ·

where b1 = 1
a1

and for n > 1 we have

bn = 1

nan1

∑

c1,c2,...

(−1)c1+c2+··· n(n + 1) · · · (n − 1 + c1 + c2 + · · · )
c1!c2! · · ·
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(
a2
a1

)c1 (
a3
a1

)c2 (
a4
a1

)c3
· · · ,

with the sum taken over c1, c2, c3, . . . such that

c1 + 2c2 + 3c3 + · · · = n − 1.

In the current case, f (x) = log(x) = x + L1x p + L2x p2 modulo (x p3), so we have
coefficients an given by

an =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n = 1

L1 if n = p

L2 if n = p2

0 otherwise.

The Lagrange inversion formula for the coefficients of exp(x) then simplifies to

bn = 1

n

∑

c1,c2,c3,...
(−1)c1+c2+c3+··· n(n + 1) · · · (n − 1 + c1 + c2 + c3 + · · · )

c1!c2!c3! · · · ac12 ac23 ac34 · · · .

But since ai = 0 unless i = 1, p or p2, the terms in the sumwill vanish if the exponent
on any of these terms is nonzero. Hence, the only nonzero ci that will contribute to
the sum are those for which i = p − 1 and i = p2 − 1. Hence,

bn = 1

n

∑

cp−1,cp2−1

(−1)cp−1+cp2−1
n(n + 1) · · · (n − 1 + cp−1 + cp2−1)

cp−1!cp2−1!
a
cp−1
p a

cp2−1

p2

where

(p − 1)cp−1 + (p2 − 1)cp2−1 = n − 1.

We consider exp(x) modulo (x p2+1), so we only need to compute the coefficients bn
up to n = p2. Therefore, the only solutions of (p − 1)cp−1 + (p2 − 1)cp2−1 = n − 1
are

cp−1 = i, cp2−1 = 0 for i = 1, 2, . . . , p + 1

when n = i(p − 1) + 1 together with

cp−1 = 0, cp2−1 = 1
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when n = p2. Hence,

bn =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)i

i(p−1)+1

(pi
i

)
Li
1 if n = i(p − 1) + 1 for i = 1, . . . , p

(−1)p+1

p2
(p(p+1)

(p+1)

)
L p+1
1 − L2 if n = p2

0 otherwise.

It follows that

exp(x) = x +
⎛

⎝
p+1∑

i=1

(−1)i

i(p − 1) + 1

(
pi

i

)
Li
1x

i(p−1)+1

⎞

⎠ − L2x
p2

= x +
⎛

⎝
p+1∑

i=1

(−1)i

i

(
pi

i − 1

)
Li
1x

i(p−1)+1

⎞

⎠ − L2x
p2

Letting j = i − 1 gives the formula. ��
Now that we have formulas for both log(x) and exp(x) we can apply them to

compute F(x, y) = exp(log(x) + log(y)) and prove Theorem 3.1.

Proof of Theorem 3.1 First, we consider the middle term
∑p

j=0
(−1) j

j+1

(p( j+1)
j

)

L j+1
1 x j(p−1)+p of Theorem 3.2. Evaluating at log(x) + log(y), modulo (x, y)p

2+1

we have

p∑

j=0

(−1) j

j + 1

(
p( j + 1)

j

)
L j+1
1

(
(x + y) + L1(x

p + y p)
) j(p−1)+p

=
p∑

j=0

j(p−1)+p∑

k=0

(−1) j

j + 1

(
p( j + 1)

j

)(
j(p − 1) + p

k

)

Lk+ j+1
1 (x p + y p)k(x + y) j(p−1)+p−k .

The terms of this polynomial are homogeneous of degree pk + j(p − 1) + p − k =
(k+ j)(p−1)+ p. So,modulo (x, y)p

2+1, the terms in the sumvanishwhen k+ j > p.
Therefore, we can restrict the upper bound on the inner sum to p − j to obtain

=
p∑

j=0

p− j∑

k=0

(−1) j

j + 1

(
p( j + 1)

j

)(
j(p − 1)+ p

k

)
Lk+ j+1
1 (x p+y p)k(x+y) j(p−1)+p−k

=
p∑

j=0

p∑

i= j

(−1) j

j + 1

(
p( j + 1)

j

)(
j(p − 1) + p

i − j

)
Li+1
1 (x p + y p)i− j (x + y)p+ j p−i

=
p∑

i=0

i∑

j=0

(−1) j

j + 1

(
p( j + 1)

j

)(
j(p − 1) + p

i − j

)
Li+1
1 (x p + y p)i− j (x + y)p+ j p−i .
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Here, we have set i = k + j . For the final step, note that the second sum is over i, j
such that 0 ≤ j ≤ i ≤ p. This condition is equivalent to the condition that 0 ≤ i ≤ p
and 0 ≤ j ≤ i ; hence, the sums are the same.

Evaluating the final term, L2x p2 at log(x) + log(y) we have

L2(log(x) + log(y))p
2 = L2(x + y)p

2
mod (x, y)p

2+1.

So, modulo (x, y)p
2+1, and substituting for L1 and L2 using (3.1), we have

exp(log(x) + log(y))

= (x + y) + L1(x
p + y p) + L2(x

p2 + y p
2
)

−L1(x + y)p −
p∑

i=1

Li+1
1

i∑

j=0

(−1) j

j + 1

(
p( j + 1)

j

)(
j(p − 1) + p

i − j

)

(x p + y p)i− j (x + y)p+pj−i

= x + y − u1
p − pp

pCp(x, y)

−
p∑

i=1

ui+1
1

1

(p − pp)i+1

i∑

j=0

(−1) j

j + 1

(
p( j + 1)

j

)(
j(p − 1) + p

i − j

)

(x p + y p)i− j (x + y)p+pj−i

− 1

p − pp2

(
1 + u p+1

1

p − pp

)
pCp2(x, y)

= x + y − u1
1 − pp−1Cp(x, y) −

p∑

i=1

ui+1
1 Pp+i(p−1)(x, y)

− 1

1 − pp2−1

(
1 + u p+1

1

p − pp

)
Cp2(x, y).

��

3.2 The action

The following is Proposition 3.2 in [11]. To make sense of the statement, recall the

following facts. Fix g = ∑
i≥0 gi S

i in S with gp2

i − gi = 0. Let g∗ : R → R be
ring homomorphism given by the left action of S on R. Then there is an associated
	-isomorphism hg : g∗F → F , and since F is p-typical, it takes the form

hg(x) =
∑F

i≥0

ti (g)x
pi (3.2)
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for ti (g) ∈ R such that ti (g) = gi modulo (p, u1). In particular, t0 is a unit. Further,
note that [p]F (x) = px +F u1x p +F x p2 and the ti (g) satisfy the following recursive
formula

hg([p]g∗F (x)) = [p]F (hg(x)). (3.3)

Below, we fix g and abbreviate ti = ti (g).

Theorem 3.3 (Lader) Let p be any prime. Let g ∈ S. Then

(a) g∗(u1) = t p−1
0 u1 + t−1

0 t1(p − pp),

(b) t0 = t p
2

0 + u1t
p
1 − t p(p−1)

0 t1u
p
1 modulo (p), and

(c) t1 = t p
2

1 + t p2 u1 − ∑p−1
i=1

1
p

(p
i

)
ui+1
1 t pi1 t p

2(p−i)
0 modulo (p, u p+1

1 ).

Proof First, studying (3.3) modulo (x p+1) gives

t0

(
px +

g∗F
g∗(u1)x p

)
+
F
t1(px)

p = p
(
t0x +F t1x

p) +F u1(t0x)
p.

The higher order terms are all of order greater than x p, so this reduces to

t0 px + t0g∗(u1)x p + t1 p
px p = pt0x + pt1x

p + u1t
p
0 x

p.

Comparing the coefficients of x p gives (a).
Using this result modulo (p), (3.3) gives the following equality:

∑F

i≥0

ti

(
t p−1
0 u1x

p +
g∗F

x p2
)pi

= u1

⎛

⎝
∑F

i≥0

ti x
pi

⎞

⎠
p

+
F

⎛

⎝
∑F

i≥0

ti x
pi

⎞

⎠
p2

. (3.4)

This trivially reduces to

t0

(
t p−1
0 u1x

p +
g∗F

x p2
)

+
F
t1

(
t p−1
0 u1x

p +
g∗F

x p2
)p

= u1

(
t0x +

F
t1x

p +
F
t2x

p2
)p

+
F

(
t0x +

F
t1x

p +
F
t2x

p2
)p2

.

The higher order terms are divisible by x p2+1, so we conclude that

t p0 u1x
p + (

t0 + t1(t
p−1
0 u1)

p)x p2 = u1t
p
0 x

p + (
u1t

p
1 + t p

2

0

)
x p2 .

Part (b) follows by comparing coefficients of x p2 .
The proof of part (c) is more involved: it is proved by comparing the coefficients of

x p3 . First, using parts (a) and (b) we compute the following modulo (x p3+1, u p+1
1 ),

using the fact that g∗(u1)x p +
g∗F

x p2 = t p−1
0 u1x p + x p2 modulo (x p2+p):
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∑F

i≥0

ti

(
g∗(u1)x p +

g∗F
x p2

)pi

= t0

(
t p−1
0 u1x

p +
g∗F

x p2
)

+
F
t1

(
t p−1
0 u1x

p + x p2
)p +

F
t2

(
t p−1
0 u1x

p
)p2

= t0

(
t p−1
0 u1x

p +
g∗F

x p2
)

+
F

(
t1t

p(p−1)
0 u p

1 x
p2 + t1x

p3
)

Therefore, the coefficient of x p3 is c + t1 where c is the coefficient of x p3 in

t0

(
t p−1
0 u1x

p +
g∗F

x p2
)

+
F
t1t

p(p−1)
0 u p

1 x
p2 .

To compute this coefficient define

X = t p−1
0 u1x

p, Y = x p2 , Z = t1t
p(p−1)
0 u p

1 x
p2 .

First, we note that Xi Z j = 0 modulo (u p+1) for i, j > 0. Then, letting

F(s, t) = s + t +
∑

i, j>0

ai, j s
i t j ,

we have that c is the coefficient of x p3 in the following expression which is computed
modulo (u p+1

1 , x p3+1):

t0(X +
g∗F

Y ) +
F
Z = t0(X +

g∗F
Y ) + Z +

∑

i, j>0

ai, j (t0X +
g∗F

Y )i Z j

= t0(X +
g∗F

Y ) + Y + Z +
∑

i, j>0

ai, j Y
i Z j − Y

= t0(X +
g∗F

Y ) + Y +
F
Z − Y .

From Theorem 3.1, we have that, modulo (x p3+1),

Y +
F
Z = Y + Z − u1

1 − pp−1Cp(Y , Z) −
p∑

i=1

ui+1
1 Pp+i(p−1)(Y , Z).

We have dropped the term involving Cp2(Y , Z) since it has degree greater than p3.
Each monomial in Cp(Y , Z) is a multiple of Z , so u1Cp(Y , Z) vanishes modulo

(u p+1
1 ). The terms of the sum indexed by i are homogeneous of degree p3+i(p3− p2)

and so vanishmodulo (x p3+1). Therefore, the coefficient of x p3 inY+
F
Z is zeromodulo

(u p+1
1 ).
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Using Theorem 3.1 again, we have that modulo (x p3+1)

X +
g∗G

Y = X + Y − u1
1 − pp−1Cp(X ,Y ) −

p∑

i=1

ui+1
1 Pp+i(p−1)(X ,Y ).

Again, the term involvingCp2(X ,Y ) has degree greater than p3 and has been omitted.
The highest power of x in Cp(X ,Y ) is p3 − p2 + p, so this term in the sum cannot

contribute to the coefficient of x p3 . This leaves the sum indexed by i . Fix i . Then if
i − j ≥ 1, the monomials of Pp+i(p−1) are zero modulo (u p+1

1 , x p3+1). So we only
consider the terms such that i = j , which gives

p∑

i=1

ui+1
1

1
(p−pp)i+1

(−1)i

i+1

(p(i+1)
i

)
(X + Y )p+i(p−1).

When the power of Y = x p2 in the binomial expansion (X + Y )p+i(p−1) exceeds
p, the monomials vanish modulo (x p3+1). In the remaining monomials, the exponent
of X = t p−1

0 u1x p is at least i(p − 1), so that after multiplying with ui+1
1 , these

monomials vanish modulo (u p+1
1 ). Therefore, the coefficient of x p3 in X +F Y is also

zero modulo (u p+1
1 ). We conclude that c = 0 modulo (u p+1

1 ) which implies that the

coefficient of x p3 on the left hand side of (3.4) is t1 modulo (u p+1
1 ).

Now, we need to compute the coefficient of x p3 on the right hand side of (3.4).
Modulo (u p+1

1 , x p3+1), we have,

u1

⎛

⎝
∑F

i≥0

ti x
pi

⎞

⎠
p

+
F

⎛

⎝
∑F

i≥0

ti x
pi

⎞

⎠
p2

= u1

(
t0x +

F
t1x

p +
F
t2x

p2
)p

+
F

(
t0x +

F
t1x

p +
F
t2x

p2
)p2

= u1

((
t0x +

F
t1x

p
)p

+ t p2 x
p3

)
+
F

(
t p

2

0 x p2 + t p
2

1 x p3
)

=
(
u1

(
t0x +

F
t1x

p
)p

+
F
t p

2

0 x p2
)

+ u1t
p
2 x

p3 + t p
2

1 x p3

We apply Theorem 3.1. Using the fact that we are working modulo (p), that
Cp2(t0x, t1x

p)p = 0 modulo (x p3+1), and that, modulo (u p+1
1 , x p3+1),
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u1

(
t0x +

F
t1x

p
)p

= u1

(
t0x + t1x

p − u1
1 − pp−1Cp(t0x, t1x

p)

−
p∑

i=1

ui+1
1 Pp+i(p−1)(t0x, t1x

p)

)p

= u1
(
t p0 x

p + t p1 x
p2

)

the problem reduces to computing the coefficient of x p3 in

(
u1t

p
0 x

p + u1t
p
1 x

p2
)

+
F
t p

2

0 x p2 +
(
u1t

p
2 + t p

2

1

)
x p3 .

Let

A = u1t
p
0 x

p, B = u1t
p
1 x

p2 , C = t p
2

0 x p2 .

Then the coefficient of x p3 in the preceding expression is c+ (u1t
p
2 + t p

2

1 ) where c is

the coefficient of x p3 in

(A + B) +
F
C .

Using Theorem 3.1 once again, we have that modulo (x p3+1)

(A + B) +
F
C = A + B + C − u1

1 − pp−1Cp(A + B,C)

−
p∑

i=1

ui+1
1 Pp+i(p−1)(A + B,C)

dropping as usual the term involvingCp2(A+B,C) for degree reasons. Since A+B is

divisible by u1x p andC by x p2 , a slightly tedious but straightforward inspection of the
sum indexed by i shows that it vanishes modulo (u p+1

1 , x p3+1). Clearly, A + B + C

has no powers of x p3 , so cannot contribute to the coefficient of x p3 . It remains to
inspect Cp(A + B,C). We have

Cp(A + B,C) =
p−1∑

k=1

1

p

(
p

k

)
uk1

(
t p0 x

p + t p1 x
p2

)k
t p

2(p−k)
0 x p2(p−k)

=
p−1∑

k=1

1

p

(
p

k

)
uk1

(
k∑

�=0

(
k

�

)
t p�0 t p(k−�)

1 x p�+p2(k−�)

)
t p

2(p−k)
0 x p2(p−k)

=
p−1∑

k=1

1

p

(
p

k

)
uk1

(
k∑

�=0

(
k

�

)
t p�+p2(p−k)
0 t p(k−�)

1 x p3−�(p2−p)

)
.
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The terms of degree p3 correspond to those for which � = 0, which is exactly
Cp(B,C). Hence, the coefficient of x p3 in (A + B) +

F
C is equal to the coefficient of

x p3 in

− u1
1 − pp−1Cp(B,C) = − 1

p − pp

⎛

⎝
p−1∑

k=1

(
p

k

)
uk+1
1 t p

2(p−k)
0 t pk1

⎞

⎠ x p3 .

So, combining this with the above, we get that the coefficient of x p3 on the right hand
side of (3.4) is

t p
2

1 + t p2 u1 − 1

p − pp

p−1∑

i=1

(
p

i

)
ui+1
1 t pi1 t p

2(p−i)
0

modulo (u p+1
1 ). Hence, equating coefficients, we have

t1 = t p
2

1 + t p2 u1 −
p−1∑

i=1

1

p

(
p

i

)
ui+1
1 t pi1 t p

2(p−i)
0 mod (p, u p+1

1 )

as claimed. ��

We finish with the following result.

Theorem 3.4 (Lader) Let p be any prime. Let g = 1+g1S+g2S2 modulo (S3). Then

t0 = 1 + gp
1 u1 − g1u

p
1 + (

g2 − gp
2

)
u p+1
1 +

p−1∑

i=1

1

p

(
p

i

)
gpi
1 u p+1+i

1

+ g21u
2p
1 + gp

1 u
p2

1 mod
(
p, u2p+1

1

)
.

Proof Using the fact that, modulo (p, u1), t0 = 1, t1 = g1, and t2 = g2 and the fact

that gp2

i = gi , it follows from part (c) of Theorem 3.3 that

t1 = g1 + gp
2 u1 − u21

p−1∑

i=1

1

p

(
p

i

)
ui−1
1 gpi

1 mod (p, u p+1
1 ).

From part (b) of Theorem 3.3, we also conclude that

t0 = 1 + gp
1 u1 − g1u

p
1 mod (p, u p+1

1 ).
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Now, re-substituting these results into part (b) of Theorem 3.3 and computing
modulo (p, u2p+1

1 ), we have

t0 = (
1 + gp

1 u1
)p2 + u1

(
g1 + gp

2 u1
)p

− (1 + gp
1 u1)

p(p−1)

⎛

⎝g1 + gp
2 u1 − u21

p−1∑

i=1

1

p

(
p

i

)
ui−1
1 gpi

1

⎞

⎠ u p
1

= 1 + gp
1 u

p2

1 + u1g
p
1 + g2u

p+1
1

−
(
u p
1 − g1u

2p
1

)
⎛

⎝g1 + gp
2 u1 − u21

p−1∑

i=1

1

p

(
p

i

)
ui−1
1 gpi

1

⎞

⎠

= 1 + gp
1 u1 − g1u

p
1 + (

g2 − gp
2

)
u p+1
1 +

p−1∑

i=1

1

p

(
p

i

)
u p+i+1
1 gpi

1

+g21u
2p
1 + gp

1 u
p2

1 .

This proves the claim. ��
Note that the last term in Theorem 3.4 vanishes modulo (u2p+1

1 ) when p is odd.

3.3 Formulas for the prime 2

To prove our results when p = 2, we need more information on the action of g than
what was determined in Theorem 3.4. We gather the information in this section. We
note that the computations in this section are computer assisted, but are consistent
with the results of [1], which study the action of the group of automorphisms of the
formal group law of a super-singular curve on an associated Lubin–Tate ring.

First, we get specific about the results of Theorem 3.3 and Theorem 3.4 in the case
at hand.

Corollary 3.5 Let p = 2 and g ∈ S. Then

(a) g∗u1 = t0u1 modulo (2),
(b) t0 = t40 + u1t21 + t20 t1u

2
1 modulo (2), and

(c) t1 = t41 + t22u1 + u21t
2
1 t

4
0 modulo (2, u31).

Further, for g = 1 + g1S + g2S2 + · · · ,

t1 = g1 + g22u1 + g21u
2
1 mod (2, u31).

t0 = 1 + g21u1 + g1u
2
1 + (g2 + g22)u

3
1 + g21u

4
1 mod (2, u51).

The computation of F(x, y) = exp(log(x) + log(y)) modulo (x, y)16 using the
information provided at the beginning of Sect. 3.1 is not expensive for a computer. It
would not be enlightening to include the formula here, but the following computations
use it, together with the following fact.
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Lemma 3.6 If F(x, y) is known modulo (x, y)16 and x2|X and x4|Y , then F(X ,Y )

is determined modulo (x, y)34.

Proof The error terms for F(x, y) have the form xy(x, y)14. If X , Y are as stated, the
monomials XY (X ,Y )14 have degree at least 34. ��
As before, we collect information from the relation

∑F

i≥0

ti

(
t0u1x

2 +
g∗F

x4
)2i

= u1

⎛

⎝
∑F

i≥0

ti x
2i

⎞

⎠
2

+
F

⎛

⎝
∑F

i≥0

ti x
2i

⎞

⎠
4

. (3.5)

We will study the coefficients in this equation up to that of x32 for elements g ∈ S

of the form g = 1 + g2S2 modulo (S3). Note that t1 = g1 modulo (2, u1) and since
g1 = 0, we have t1 = 0 modulo (2, u1). We also note that, modulo (2, u1), F(x, y) is
equivalent to the Honda formal group law whose coefficients are in F2. So,

F(x, y)2 = F(x2, y2) mod (2, u1).

Proposition 3.7 Let g = 1 + g2S2 + g3S3 + g4S4 + · · · . Then
(a) t3 = g3 + g24u1 modulo (2, u21),
(b) t2 = g2 + g23u1 + g1u21 + (g4 + g22 + g22)u

3
1 modulo (2, u41)

(c) t1 = g22u1 + g3u31 + g23u
5
1 + g3u61 + (g2 + g32 + g4 + g24)u

7
1 modulo (2, u81)

(d) t0 = 1 + (g2 + g22)u
3
1 + g3u51 + g3u81 + (g4 + g24)u

9
1 modulo (2, u101 ).

Computer Assisted Proof For (a), we compute the coefficients of x32 modulo (2, u21) in
(3.5). For this, we note using the above observations that (3.5) reduces to the following
relation modulo (u21, x

33):

t0
(
t0u1x

2 +F x4
)

+F t1x
8 +F t2x

16 + t3x
32

= u1
(
t20 x

2 +F t22 x
8 +F t23 x

16 + t24 x
32

)
+F

(
t0x +F t2x

4 + t3x
8
)4

.

By Lemma 3.6, both sides are determined modulo (x34) by F(x, y) modulo (x, y)16.
A direct computation comparing both sides gives

t3 = t43 + t24u1 mod (2, u21).

Since ti = gi modulo (2, u1), we get (a).
To get (b) we compute the coefficients of x16 modulo (2, u41) in (3.5). Modulo

(2, u41, x
17), we have

t0

(
t0u1x

2 +
g∗F

x4
)

+F t1

(
t0u1x

2 +
g∗F

x4
)2

+ t2x
16
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= u1
(
t0x +F t1x

2 +F t2x
4 + t3x

8
)2 +

F

(
t0x +F t1x

2 + t2x
4
)4

.

A direct computation comparing both sides gives the relation

t2 = t42 + t23u1 + t1t
2
0u

2
1 + t41 t

2
2u

2
1 + t160 u31 + t22 t

8
0u

3
1 + t61 t

4
0u

3
1 + t40u

3
1 mod (2, u41).

To get the result, we combine this with the fact that ti = gi modulo (2, u1), with (a)
and with Corollary 3.5.

To get (c), we compute the coefficient of x8 modulo (2, u81) in (3.5). Modulo
(2, u81, x

9), we have

t0

(
t0u1x

2 +
g∗F

x4
)

+F t1

(
t0u1x

2 +
g∗F

x4
)2

+ t2t
4
0u

4
1x

8

= u1
(
t0x +F t1x

2 + t2x
4
)2 +

F

(
t0x + t1x

2
)4

.

A direct computation comparing both sides gives

t1 = t41 + t80u
4
1 + t1t

6
0u

6
1 + t50u

4
1 + t21 t

4
0u

5
1 + t2t

4
0u

4
1 + t21 t

4
0u

2
1

+t1t
3
0u

3
1 + t22u1 mod (2, u81). (3.6)

Now, we do a short recursion. First, we use (a), (b) and Corollary 3.5 to compute that

t1 = g22u1 + g3u
3
1 + g23u

5
1 mod (2, u61)

t0 = 1 + (g2 + g22)u
3
1 mod (2, u51).

We use this again in part (b) of Corollary 3.5 and in (3.6) to finish the proof. ��
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